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An algorithm is presented for the rapid direct solution of the Lapiace
equation on regions with fractal boundaries. in a typicat application,
the numerical simulation has to be on a very large scale involving at
least tens of thousands of equations with as many unknowns, in order
ta abtain any meaningful results. Attempts {0 use convantional techni-
ques have encountered insurmountable difficulties, due to excassive
CPU time requirements of the computations involved. Indeed, conven-
tional direct algorithms for the solution of linear systems require order
O(N?) operations for the solution of an & x A-problam, while classical
iterative methods require order G(A?) operations, with the constant
strongly dependent on the problem in guestion. In either case, the com-
putational expense is prohibitive for large-scale problems. The direct
algorithm of the present paper requires O{N) operations with a
constant dependent only on the geometry of the boundary, making it
considerably more practical for large-scale problems encountered in the
computation of harmonic measure of fractals, compiex iteration theory,
potential theory, and growth phenomena such as crystallization, elec-
trodeposition, viscous fingering, and diffusion-limited aggregation.
© 1894 Academic Press, inc.

1. INTRODUCTION

During the last decade, the numerical solution of the
Laplace equation on regions with fractal boundaries has
been becoming increasingly popular both in mathematics
and physics. In mathematics, examples inciude harmonic
measure of fractals, complex iteration theory, and potential
theory. In physics, examples include growth phenomena
such as crystallization, electrodeposition, viscous fingering,
and diffusion-limited aggregation, where the harmonic
measure governs the growth of the fractal surfaces [25].
Thus, much recent work has been focused on the study of
the metric properties of harmonic measurc on fractals
[1, 7, 14, 17]. Several attempts have been made during the
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last several years to solve such problems numerically
{see [17).

Two approaches to the study of the metric properties of
the harmonic measure on fractals have received most of the
attention in recent years.

1. Viewing the harmonic measure as the relative hitting
probability at points on the surface and using the Monte
Cario method to conduct computer simulations on parallel
machines such as the connection machine (see [1]).

2. Formulating the problem as an integral equation of
the first kind and solving the resulting equation numerically.

While the first approach has produced some significant
results (see [17]), the computation becomes prohibitively
expensive when high accuracy is desired, due to the slow
convergence of the Monte Carlo method (as is well known,
the error of a Monte Carlo simulation decays hke 1 /ﬁ,
where N is the number of trials).

On the other hand, the second approach has also encoun-
tered insurmountable difficulties, due to excessive CPU time
requirements of the computations involved. Indeed, in order
to cbtain mathematically meaningful results, systems of
linear equations have to be solved, involving at least tens of
thousands of equations with as many unknowns. Conven-
tional direct methods require order O{N*) operations for
the solution of an Nx N linear system, while classical
iterative methods require order O(N?) operations, with the
constant strongly dependent on the problem in question. In
either case, the computational expense is prohibitive for
large-scale problems.

We present a direct algorithm for the rapid solution of the
Laplace equation on regions with fractal boundaries. The
algorithm requires O{N) operations with a constant
dependent only on the geometrical properties of the fractal
boundaries, where N is the number of elements in the dis-
cretization of the fractal. The scheme is sufficiently fast that
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problems involving N ~ 10° can be solved, even without the
use of supercomputers, and admits far-reaching generaliza-
tions.

The plan of the paper is as follows. In Section 2, we begin
with the definition of the problems to be addressed; in Sec-
tion 3, we summarize certain mathematical and numerical
facts to be used in this paper; in Section 4, we develop the
mathematical apparatus used in the construction of the fast
algorithm by borrowing terminology from the standard
scattering theory for the Helmholtz equation; in Section 5,
we present the description of the fast algorithm, and in
Section 6, we illustrate the performance of the algorithm by
numerical examples. Finally, in Section 7, we discuss our
conclusions.

2. STATEMENT OF THE PROBLEMS

Int this section, we define the problems to be addressed,
namely, the boundary value problems for the Laplace
equation on regions with fractals of Cantor type as the
boundaries.

A fractal of Cantor type is a classical example of fractals
(sce, for example, {2, 10, {8]), which can be generated
recursively by dividing a square in the plane into four
squares (boxes) with a ratio of sides as a parameter,

Given a real number a (0 < a < ), we define a sequence of
sets {see Fig. 1),

C§ = {the unit square}, (1)
C7 = {4 corner boxes with « as their sizes }, (2)
C{ = {4/ corner boxes with ¢’ as their sizes},  (3)

where / is an integer. The sequence {C§, C¢, C3,..}
decreases monotonically:

CiCinCin ..

The Cantor set C” associated with the given ratio a is
defined as the intersection of the sequence (see Fig. 2):

= (4)
fe {0,200}
_—t — .‘.11
a0 00
00 00
OO on
oo oo
g Ct s

FIG. 1. Sequence {C}, €7, CY, ..}

AND ROKHLIN
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FIG. 2. Cantor set C°—a fractal.

For a given integer I = 1, we define the /th approximation
to the Cantor set C” as a set

A, = {the centers of all boxes in C¢).

(5)

We will refer to the 4’ boxes of C generated during the
ith step of the above process as level [ boxes. Thus, there is
one box on level 0, and it coincides with the unit square. The
level /+ 1 is obtained from the level / by subdividing each
box on the level [ into four corner boxes (sce Fig. 1).

We will also impose a tree structure on the hierarchical
structure of C% so that if ibox is a fixed box at level /, the
four boxes at level /+ 1 obtained by subdivision of ibox are
considered its children, while the four child boxes are
considered brothers.

Given a Cantor set C° we will consider the exterior
Dirichlet probilem for the Laplace equation defined by the
formulae

Au=0
ulcazf-

for xeR™NC%

(6)

To ensure the uniqueness of the solution of problem (6), the
far-field condition

lim

x| = w0

lulx)] < o0

(7)

is normally imposed.

The proof of the following theorem can be found, for
example, in {24 1; and Remark 2.1 is a well-known fact (see
(91}, for example).
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Tueorem 2.1.  The boundary value problem (6) is a well-
posed problem.
Remark 2.1. Suppose that hm,_, ., f,=Ffon C* and u,1s

the solution of Dirichlet problem with boundary condition
defined on a set of boxes 7 (see (3)):
Au=0 for xeR\(CY,

(8)
“|c‘,’=f1-

and satisfies the far-field condition (7). Then »; converges to
the solution x of the boundary value problem (6).

Remark 2.2, As is well known (see [9], for example),
the boundary value problems (8} can be formulated as an
integral equation of the first kind by representing the solu-
tion as the logarithmic potential of the charge distribution
on the boundary Cf. Denoting by o the charge distribution
over the boundary C¥, we obtain the integral equation

L, In |x — il da(t) = fy(x) ~ fi(ec) (9)

with x € C¢, where the integration is in the sense of Borel
measure. Detailed discussion of the uniqueness of the
solution of {9) can be found, for example, in {24].

For a given integer /= 1, suppose that N =4/, and 4,=
{z;]i=1,2, ... N} is the /th approximation to the Cantor
set €9, Then, by the definition of Borel integration, the
integral equation (9) is discretized as a linear system of
equations

Ae=b  with AeR"*Yandbe R", (10)

where
Ay=log |z;—z;| for i#]}, (11)
A= ([ inraxdyl[| dxay, 12
formaffoe o

with r=/(x—x0)2+(y— po)>. and a square QeCy
centered at (x,, o). The following theorem can be casily
verified.

THEOREM 2.2. Defined by (10), (11),
matrix A is nonsingular.

and (12), the

In the rest of this paper, we focus on the numerical
solution of linear systems of the type defined by (10), (11),
and (12).

3. MATHEMATICAL AND NUMERICAL PRELIMINARIES

In this section, we summarize certain well known mathe-
matical and numerical facts 1o be used in the rest of this
paper., They can be found, for example, in [5, 8, 11, 24].

3.1. Boundary Value Problems for the Laplace Equation

Suppose that " R* is a Jordan curve, parameterized by
its tength y: [0, ] — R*, and 2 is the region bounded by I,
so that 8@ =1 Suppose further that N:[0, L] — R’ is
the interior normal to I. For an integrable function
S0, L]1—=R", we will be considering the following
problems:

(A} Interior Dirichiet problem,

xef2
xelfl;

AB(x)=0 for

O(x)=f(y~'(x))

for
(B) Exterior Neumann probiem,

A¥(x)=0

d

YT Plxy=fly~ ' (x))

with ¥ satisfying the far-field condition

for xe R*\Q
(14)

for xel

0< Ilim hut ) < oo,
el — o log |t

lim Ju(x)—clog|x| | =0,

{x| = oo

(15)

where ¢ # 0 is a constant.

As is well known, each of the above two problems has a
unique solution for any continuous right-hand side f and
piecewise smooth boundary F (see, for example, [8]).

3.2. Single and Double Layer Potentials

Suppose that a point charge of unis intensity is located at
the point x,e R% Then, for any x& R* with x # x,, the
potential due to this charge is described by the expression

$p(x)= —In({x — xo ). (16)
The potential of a dipole of unit intensity located at x,

and oriented at the direction A€ R” (}Af = 1) is described by
the formula

_ h{x —x,)
B ||x-'xo||2'

P o (X) (17)

It is well known that the potential ¢, due to a point
charge at x,e R {defined by formula {16)) is harmonic in
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any region excluding the source point x,. Moreover, for any
harmonic function u: R* — R!, there exists an analytic func-
tion w: C — C such that u(x, v) = Re(w(x, y)). In the rest of
this paper, we will make no distinction between points in R?
and peints in C. In complex terms, the potentials ¢, and
$.,.n defined by the expressions (16) and (17), respectively,
assume the forms

x.,(z)=Re(—In(z — z,))

and

h
¢zo,h(z)=Re( )
7—2Z4

where z = x+ iy and z, =x, + iy,. Following the standard
practice, we will refer to the analytic function In(z — z,,) as
the potential at the point z € C due to a charge located at the
point z,

For an integrable function u: [0, L] — R', the potential
of a single layer with density y is given by

L
P(x)= | dolx) st) d, (18)

and the potential of a double layer with the dipole density u
is given by

L
Px) = | k) l0) (19)

3.3, Integral Equations of the Classical Potential Theory

In the classical potential theory, the interior Dirichlet
problem (13) is solved by representing @ as the potential of
a double layer, and the exterior Neumann problem (14) is
solved by representing ¥ as the potential of a single layer.
The analysis of the single layer and double layer potentials
in the vicinity of the boundaries results in two integral equa-
tions of the second kind.

(A1) Interior Dirichlet problem,
0
el + | (e 108 170 =70l iy dt = 1) (20)
(B1) Exterior Neumann problem,
nmr)+m [ tog Iytx)— )t di= £ (20)

34. Galerkin Method for the Solution of Integral Equations

As is well known, the classical Galerkin method can be
used for the numerical solution of integral equations of the
form

u(x)+j K(x, 0) u(r) dt = f(x). (22)

Given an orthonormal basis {P,(x)} in L*{a, ], the
function y,.: [0, L] — R! defined by

n

Halx)= Z ¢; Py(x)

i=1

(23)

and satisfying

{r, t,)=0 (24}
will be used to approximate the solution of the integral
equation (22), where the error function r(x) in formula (24)
is defined via

Fx) = () + j: K ) ) di—F(x). (25)

The above procedure results in a linear system Be=»5
defined by

L oLl
B:j j K(x, 1) P,(x) PA2) dx dt
1] 0 !

Y

for i#), 1<i,j<n, (26)
and for 1 €i<€n, B;=1,
b= j £(x) Py{x) dx. (27)

Lemma 3.1 below introduces the well-known Legendre
polynomials, and Lemmas 3.2 and 3.3 present the integrals
(26) in Cartesian and polar coordinate respectively for
integral equations (20) and (21 }.

LEMMA 3,1. The Legendre polynomials P,(x) defined by

"(Y v Z"n' dx

are orthonormal polynomials on interval | — 1, 1].

%l*

(28)
n=1,2,.,

[ )
=
+

2~1)”5

Lemma 3.2, Suppose that Q is a square with vertices
(1, 1), (1, =1), (=1, =1), (=1 1), the boundary of Q
is denoted by I, and {P(x), Psy(x), .., Po(x), ..} are the
Legendre polynomials (see Lemma 3.1). Suppose further that
u is the solution of Eq. (20) or (21), and for each of the two
horizontal sides of £,

wix) =Y &P, (29)
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for each of the two vertical sides of €,

n

td¥)= 2, m:Pi(y). (30)
i=0
Then the integrals in (26) are of the form
Lopl {(y+1) . .
I.= . Pix)P,(y)dxdy, 1
y J‘_ljﬁl(x+1)-+(y+l)2 (x) By dx dy, (31)
for any two adfacent sides of the square Q, and
1M 2
J,-j=J-(lj_lmP!(X)Pj(y)dxdy, (32)

Jor non-adjacent sides of the square Q, where 1 <i,j<n.

The following lemma is obtained immediately by con-
sidering the integrals 7, in (31) in polar coordinates.

LEMMA 3.3.  Suppose that for 1 <1, j< n, integrals I; are
defined by formula (31), Then

A !

X P,(rsin 8 — 1) sin 8 dr db. (33)

Remark 3.1, While the Integrals f; in the formula (31)
are singular functions in the Cartesian coordinates, they are
smooth {C®) functions in the polar coordinates. Thus, the
integrals (33) can be efficiently evaluated via Gaussian
quadratures in polar coordinates.

3.5. Ranks of Interactions

In this section, we consider electrostatic interactions and
establish Theorem 3.1, which is the principal analytical tool
of this paper.

For two sets of points {x,, x,, .., x,,} and {y,, 2, ¥.},
we define the interaction matrix of the two sets as a mxn
matrix given by

¢J‘](xl) ¢y2(x$) LT ¢y,.(xi)
(8, (xpy=| D Gl ) (34)
¢’y1(xm) ¢'_vz[xm) ¢_r,,{xm)
In(x, —»,) In(x; —y,) < Inf{x—y,)
_ In(x,— y,) In(x;—y,) - In{x,—y,)
(%= 31) W= ) - I(x,— 3,)
(35)

Lemma 3.4 below can be easily proved by expanding
In(1 —w} into Taylor series with respect to «; Lemma 3.5 is
the reformulation of Lemma 3.4 and wiil be used in the
proof of Theorem 3.1.

LEmMMA 34, Let a unit point charge be located at z,.
Then for any z such that |z| > |z,],

- a
bal2)=In(z— 20} =5 In(2) + 3 —, (36)
k=1
where
ay=1, a,=(—)zk/k. (37)
Furthermore, for any p 2 1,
L oa 1 1Y
bols)— aoln(z) - ¥ &% s( )(-) . 08)
P-4 c—1/A¢c
where
e=z/z,]. (39)
LemMMA 3.5, Suppose that the expansion (36) is truncated

after p terms (p = 1), and the error of the truncated expansion
by el (z},

£2(2)= dulc)—aoIn(z) — 3. (/=)
k=1

Then for any p= 1,

¢za(z)=sf0(z)+upv;,r (40)

with the vectors u, and v, defined by

11 1
u,,-_(lnz, b ,;) (41)

2 P
{1, 20 20 %o 42
U]J ( . 1 7 2 L) 1 p ) ( )
Furthermore,
1 1h\*
ol <( )(-) (43)
c—1 /¢

with c defined by (39).

Ciearly, the truncation error ef(z) in (43) decays
exponentially as the function of p. Thus few terms in (36) are
needed to achieve any given accuracy. The following
theorem follows immediately from formulae (40) and (43).
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%

FIG. 3. Points {x,} outside the circle with radivs (1 + 1) R.

THEOREM 3.1.  Ler n wnit charges be located within the
circle |yl <R at points {y,,..v,}, A>0 be some real
number and {x,, X4, .., X,,} e another set of points such
that |x;| > (1 + )R for all 1 <i<m (see Fig. 3). Then the
interaction matrix of the two sets {x;} and {y;} has the
decomposition

1 1 1
1nx, —_— - —p
X, X xf
| I 1
he o = .
(4, (x;})= 2 :2 7
| 1 i |
nx, — — —
" 'YPH xrz?l x{)’?
! 1 1
— ¥y — ¥ Yo
1 1 1
-y =3 —rh
x 2 2 2 + E?, (44)
gt s S
P P P

where the truncation error EF = (g} (x,)) is bounded by the

expression
1 1 A\
s )| —
o7 G (/__)(1 H)

Jori<i<mand 1 <j<n

(45)

Inequality {(45) states that every element of the matrix of
truncation error £° decays exponentially as the function
of p. Thus for any given accuracy, the interaction matrix of
the two sets {x,;} and {y;} can be decomposed into the
product of two matrices of low rank.

For two sets of points, x,,x,,..x,6C and
FYis Vas - ¥ € C, we say that the two sets are well-separated

FIG. 4. Well-separated sets in the plane,

(see Fig. 4) if there exist points x,, yoe C, and R >0 such
that

|x,— x5l <R for 1gi<m,
ly,—yol <R for 1<j<n,
|xo— yol > 3R

Theorem 3.1 implies that with any prescribed precision,
the interaction matrix of two well-separated sets can be
decomposed into a product of two matrices of low rank, and
the rank is bounded by a constant depending only on the
separation of the two sets (see formula (45)).

3.6. Interactions in Cantor Sets

Suppose that D, and D, are two subsets of a Cantor set
C* and that 4, is the /th approximation of C¢ (see (5)}), then
we will refer to the interaction between D, n A,and D, n 4,
as the interacion between D, and D,.

Theorem 3.2 below states that for any given ratio g, the
interactions in Cantor set C* are of low rank; and the ranks
are bounded by a constant dependent only on the ratio ¢ in
the generation of the Cantor set. Lemma 3.6 is obvious and
will be used in the proof of Theorem 3.2.

LEmMa 3.6. Suppose that D, D; are mwo subsets of a
Cantor set C with ratio a, and each of them are divided into
Sfour pieces of equal size (child boxes) (see Figure 5}). Suppose
Surther that A is a child box of D, and B is a child box of D,.
Then the rank of the interaction matrix berween subsets D,
and D, is at most four times as large as that between boxes A
and B.

THEOREM 3.2. For a reala (0<a<3$), and an integer
[z 1, suppose that C° is the Cantor set associated with the
ratio a, and CY is the ser of boxes generated at the Ith level

Ci={D, D, .., Dyl (46)
Then for any given precision, the rank of the interaction
mairix between any two boxes D, and D, {i # j) is bounded by
a constant dependent only on the ratio a for generating the
Cantor set C°. The constant does not depend on the sizes of

boxes and the numbers of points inside the boxes. In other
words, the matrix of interactions between any two boxes at
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FIG. 5. Two subsets of C%.

any level of Cantor set C% is of fixed rank, to any prescribed
precision.

Proof.  The theorem follows immediately from Theorem
3.1 1l any two sets D, and D, (i # j) are well separated.

Suppose that D, and D, are not well separated from each
other. Then we divide each of them into four pieces (child
box) of equal size (see Fig. 5). Suppose that A4 is a child box
of D, and B is a child box of D, (see Fig. 5). Then the
theorem follows from Lemma 3.6 and Theorem 3.1, if 4 and
B are well separated from each other.

Suppose that sets A4 and B are not well separated. Then
we keep dividing them into pieces until the smallest pieces
are well separated. Due to Lemma 3.6 and Theorem 3.1, the
rank of the interaction matrix between any two boxes at any
level of the Cantor set is bounded by

with k= |BO=20/G2-01 o

p-4
Ina

where p is the rank of the interaction matrix between two
well-separated pieces. 1l

Remark 3.2. Clearly, the estimate (47) is an extremely
pessimistic one. In the following section, we obtain much
sharper numerical estimates (see Section 4.3).

4. SCATTERING THEORY FOR THE
LAPLACE EQUATION

In this section, we borrow terminology from the standard
scattering theory for the Helmholtz equation and refer to
the result as scattering theory for the Laplace equation. In
the following, we first introduce the concept of scattering
matrix, and then we present a merging scheme for
generating scattering matrices recursively.

Throughout this section, I will denote a Jordan curve,
parameterized by its lengthy: [0, L]— R% The region
bounded by I will be denoted by 2, and [ will denote a
compact subset of 2 (Fig. 6). In addition, G- 2 x £ - R!
will denote the Green’s function for domain @2, and
N: [0, L] - R? will denote the interior normal to I”. For a
compact set Ec R?, .#(E) will denote the set of all non-
negative Borel measures on E.

FIG. 6. Compact set D in domain £ with boundary F.

4.1. Scattering Matrices

Any function &:£ — R harmonic inside £ and con-
tinuous on Q will be referred to as incoming potential. As is
well known, for any continuous function ¢: I" — R, there
exists a unique function @; {2 — R harmonic on £ and con-
tinuous on 2 such that @), = . Therefore, we will abose
the notation by referring to the function ¢: I — R as the
incoming potential.

Suppose that g€ L(£2) and ¢ is a Borel measure over D.
Given a function K e L*(R? x R?), the function

'P(x):LK(x,t}q(t)da(t) for xeR}M\D (48)

will be referred to as outgeing potential. Similarly, we wili
call its restriction ¥ = ¥|, onto [ an outgoing potential.
Outside the domain £, function ¥ will also be referred to as
scattered porential.

Remark 4.1. Particularly, we are interested in the case
when K{x, )=Inlx—1|, and g{1) is the characteristic
function of D. Then the outgoing potential

'P(x)=L) In ||x — f]| dott) (49)

is a function harmonic in R2\D and satisfies the far field
condition {15).

We define three operators

L LYT)— L}{D),
P: #(D)— LARN\D),
S M(D)— LX),

via the formulae

1 L
L)) =5 [ 00) 55 6ls #0)) -,

In 3N, (50)



42 JONES, MA, AND ROKHLIN

P(o)(x) = fD K(x, €) g(1) do(r)

for xe RI\D, (51)
S(a)(x)=j K(x, 1) q(r)do(t)  for xel. (52)
Fal
We will be considering equations of the form
Ple)=1, (53)

with fe L*(D). A special case of Eq.(53) is the integral
equation (9) defined in Section 2, with D a Cantor set,
K{x,)=1In|x—t|, and g{r) the characteristic function
of D.

DEFINITION 4.1.
by the expression

The operator a: L*(1")—L*(I") defined

a=S-P'-L (54)
will be referred to as the scattering matrix associated with
the triple (D, I, X).

Remark 4.2, Given an incoming potential ¢ on the
boundary [, the operation ofx on ¢ can be viewed as
consisting of three steps:

1. The operator L constructs a function f=Lp: 2 - R
harmonic over the compact set D and such that (Lo)| = ¢.

2. The operator P~ " constructs the solution o = P~ 'fof
Eq. {53) from the harmonic function f = Ly. The charge
distribution o = P !Lg will be referred to as the induced
charge distribution.

3. The operator S defined by (52) constructs an out-
going potential v =S¢ on [ from the induced charge
distribution ¢. The outhgoing potential ¢ will be referred to
as the induced outgoing potential.

Thus, the scattering matrix o converts an incoming
potential ¢ into the induced outgoing potential ,

EST (55)

4.2. Recursive Generation of Scattering Matrices

When a compact subset D of domain €2 is a union of
mutually disjoint compact sets {D,}, the scattering matrix
of D can be obtained by merging the scattering matrices
of {D;}. We begin with introducing the requisite notation
and then present a merging scheme for the recursive genera-
tion of scattering matrices.

4.2.1. Notation

Suppose that A= {I'|, I, ., I, } =€ is a set of closed
Jordan curves. Each I, e 4 is parameterized by its length

FIG. 7. D;cQ.for1igigsm

7:: [0, L,] = R? Q,c Qis the region bounded by I';, and D,
is a compact subset of 2, (see Fig. 7). Suppose further that
for 1<i<m, D; is a compact subset of 2, function
G,;:Q,xQ,— R'is the Green’s function for domain £;, and
function N;: [0, L] — R?is the interior normal to I',.

Assuming that the domains {€,} are mutually disjoint,
we will consider a special compact subset of domain
defined by

In addition to operators L, P, and .5 defined by (50), (51),
and (52) in the preceding section for (D, I'), we will require
the operators for (D, I';) with 1 i< m,

L, L3Iy — LYR)),
P M(D;)— LQ(RZ \D,),
St H (D) — LT,

defined by
1 ru 2
L@ =5 | "00,(0) 5 Gila ), (56)
Pio)Nx)=] Kix,0q()do(t) for xeR\D, (57)
Suo)dx)=| Kix,nq(tydo(t) for xer. (58)
We will consider equations of the form
Pilo)=/1; (59)

with f,e L3(D;), 1 i< m.
DeriNiTioN 4.2, A function ¢, e L?(I")) will be called the
toral incoming potential if for any xe D,,

Pi(aio,)(x)=Lsf{§D:)(x)’ (60)
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where operators P, and L; are defined by (57) and (56),
respectively, and of ,, is the restriction of the charge distribu-
tion ¢ (defined by (53)) to the compact subset D, = D.

We are now applying the definition of scattering matrix to
each subset D, for 1 £ i< m (see Definition 4.1). Suppose
that for any i {1 <7< m), function ¢, is the total incoming
potential on [, function ¢, is the outgoing potential
induced by ¢,, and operator «, is the scattering matrix for
the domain D,. Then we have

%=S8;P 'L, (61)
V=09, (62)
(see (54} and (55)).
We will also require operators for 1 €4, j<m,
Lt L) - LT,
Sf:_Lz{rr')_’Lz(r),
Ly: Lz(ri)_'Lz(rj)v i# ],
defined by
Lo}y == | 912 Gl 9(0) -
dodx)=o2) ol ¥ x, (1)}
for xerl, (63)
S,-n/;,:f K(x, 1) g(r) do(1) for xel, (64)
D;

Lﬂlfhzjnl((x,:)q(r)da(z) for xel;. (65)

In other words, the operator S; converts the outgoing
potential s, on [ into the scattered potential on I, and the
operator L converts the ougoing potential y; on I, into the
scattered potential on I';.

DerFNITION 4.3, Suppose that the operator

LXTI}) L)
o LZ(_F 2) LZ{.F 2)
Lx(r,))  \LAT,)
is defined by
I —La, e A
y=| ~Lu ! ~Lantn | 66
—L;,,,al —L;nz% I

Then the operator

LA(r)
S, LX) — L?(.rz)
L)
defined by the formula
L,
S,=U"" Lf (67)
L,

will be referred to as the splitting marrix, provided the
operator {7 in (66) is nonsingular.

42.2. A Merging Scheme for Scatrering Matrices

Theorem 4.1 is the principal tool of this paper; it describes
a scheme to obtain the scattering matrix of domain D
(=U, D) from the scattering matrices of subdomains
D, Dy,..,D,. Lemmadl is used in the proof of
Theorem 4.1.

Lemma 4.1.  Suppose that @ is an incoming potential on
the boundary I" and @, is the total incoming porential on I,
defined by formula (60). If the operator U defined by (66) is
nonsingular, then we have

@

@ (68)
P

In other words, the splitting matrix §, converts the incom-

ing potential ¢ on [ into the total incoming potentials
{@1, ®3, .- ¢,,} on boundaries {I, 5, .., I, }.

Proof. For any i {1 <i<m), the total incoming poten-
tial ¢, on the boundary I'; equals the sum of the potential
from I" and the scattered potentials from { I} with j # i and
1< j<m. Thatis,

e=Lp+ L Lyb, (69)
iwi
Combining (62} with (69), we have
o,=Lp+ Z szaj(Pj' (70)

j#i

Viewing the above equations as a m x /1 linear system, we
obtain (68). |
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THeorREM 4.1, (Recursive generation of scattering
matrices). Given scaitering matrices {a.} for subdomains
{D.}, the scattering matrix o of domain D=\ | D, is given
by the formula

a=(Sa; S0, - Son®m) S5, (71)
where operators {S;} are defined by (64), and the splitting
matrix S, is defined by (67).

Progf.  Suppose that ¢ is an incoming potential on I,
and o is the charge distribution induced by . Then due to
(48), the induced outgoing potential ¥ assumes the form

We=[ Kix,1)-ql1)-datr)

=Y | Kx.0)-q(1)-dott) (72)
i=1 i
forany xer.
Combining (64) with (72), we obtain
W(x) =3 (S;-¢)(x). (73)
Substituting ¥, in (73) by a,@; (sec (62}), we have
*f/zzsr“d/i—_‘z Si-o @
9
=(Sia1 Sa% - Span)| 7 (74)
Pm

The conclusion of the theorem follows from the combina-
tion of (74), (68), and (54). ||

4.3. Scattering Matrices in Cantor Sets

Suppose that I is a compact subset of Cantor set C, and
the set D is enclosed in a domain 2 with its boundary
denoted by I (see Fig. 8}, The boundary I" will be referred
to as a frame boundary.

FIG. 8 A subset D = C9enclosed by I

To specifically deal with the problem defined in Section 2
(see {10), (11),(12)), we consider scattering matrices in
Cantor sets, with K(x, 1) =1In ||x —1]| and ¢{(t) as the charac-
teristic function of D. Then an incoming potential & is
harmonic in £2, and an outgoing potential ¥ is harmonic
in R*\D and satisfies the far-field condition (15} (see
Remark 4.1).

Furthermore, the operators P:L*(D)— L*(R*\D)
defined by formula (51) and S: L3(D) - L*(I') defined by
formula (52) assume the form

P(o)(x) = L In [|x — #]] do (1), (15)

S(a](x)=JD In ||x — ¢l do(r). (76)

In this section, we construct an analytical apparatus for
the efficient representation of scattering matrices of subsets
of Cantor sets. In Section 4.3.1 we represent incoming and
outgoing potentials in terms of single and double layer dis-
tributions; in Section 4.3.2 we describe a merging scheme for
the recursive generation of scattering matrices; and in
Section 4.3.3 we discuss the discretization of scattering
matrices and other related operators.

4.3.1. Representation of Potentials

Theorem 4.2 below described the representation of
incoming and outgoing potentials in terms of single
and double layer distributions. Theorem 4.3 follows
immediately from Theorem 4.2. Lemmas 4.2 and 4.3 are
obvious (see Section 3.3) and are used in the formulation of
Theorem 4.2,

LEMMA 4.2, Suppose that @ is an incoming potential on
the boundary I’ and \j is an outgoing potential on I'. Then the
incoming and ouigoing potentials @ and ¥ are respectively
the solutions of the following two boundary value problems:

(AA) Interior Dirichlet problem (incoming potential ),
A@(x)=0
D(x) =y ~'(x))

for xeQ

71
for xerl 77)

(BB) Exterior Neumarnn problem (outgoing potential),

A¥(x)=0 for xeR\Q2
(78}

=) for xed

with ¥ satisfying the far-fieid condition {15).

LEMMA 4.3, Suppose that ¢ is an incoming potential on
the boundary I' and \J is an outgoing potential on I'. Suppose
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further that a dipole distribution u, and a charge distribution
U, are respectively the solutions of the two integral equations,

log I17(x) —v() palr) dr = p(x)  (79)

I é
aN(t)
T L 108 10 =3 ) =Y. (30)

mpy(x)+

- n“s(x) +o

Then the incoming and outgoing potentials can be represented

by

log lly(x) —v(0)] pale)dr,  (81)

L9
=], v

Py = [ Tog f(x) = 000 ) . (82)

Theorem 4.2 below can be viewed as a reformulation of
Lemma 4.3 in the operator notation. First, we define four
operators

Qq: LA = LA(R),
Q. LYT) = LY{(R)\Q),
P LAy~ LX),
P LX) - LY(T),

via

, L9

Q)= [ G108 b0 =10 pa) db, - (83)
L

Q. )(x) = | log 1) = (1) (o) e (84)

Pl =)+ | s log () =0
X palt) dt (85)

Pk) = —mal) + 5= | o B =0
X p(t) dt. (86)

THEOREM 4.2.  Suppose that ¢ is an incoming potential on
the boundary I’ and \ is an outgoing potential on I'. Then the
incoming and outgoing potentials can be represented via

Cp: QdP;l(ps
Y=0,P7 'Y,

(87)
(88)

where operators Q,, Q,, P, and P, are defined by (84), (83),
(86), and (85), respectively.

TueoREM 4.3, Suppose that L: L3I}
operator defined by (50). Then

LAD) is the

L(P:(ded_l@)'na (89)

with the operators P, and Q, defined by (85} and (83),
respectively.

4.3.2. Recursive Generation of Scattering Matrices

Suppose that {D,, D,, D;, D,} = C* are four subsets
{boxes) resulting from the subdivision of a bigger subset
(box), and the set D is the union the four subsets {{D,},

(90)

Suppose further that D is enclosed in a square 2 with its
boundary denoted by I". The square £ will be referred to as
frame domain (box) while I” will be referred to as the frame
boundary.

Suppose that for any integer/ (1 <i<m), the set D, is
enclosed in a square @; with its boundary denoted by I'; see
Fig. 9). Within the tree structure of the Cantor set C¥ (see
Section 2), we will refer to the frame boxes of neighbor
boxes as neighbor frame boxes and the frame box of a parent
box as parent frame box.

In this section, we obtain the scattering matrix for D from
scattering matrices for domains {D,, D,, Ds, D,4}. First, we
need the representations of operators

L. LYY — LX(T),
S, LX)~ LX),
Ly: L) — Lz(er
defined by formulae (63), {64), and (65), respectively.
Theorems 4.4 and 4.5 below follow from Theorem 4.2
immediately, Lemma4.4 is an immediate consequence

of Lemma4.l, and Theorem 4.6 is a consequence of
Theorem 4.1 and Lemma 4.4. Theorems 4.4 and 4.5 describe

FIG. 9. Four subsets of C“ and their frame boxes.
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representations of the operators L;, S;, and L defined by
formulae (63), (64), and (65). Theorem 4.6 describes a
merging scheme for the recursive generation of scattering
matrices for subsets of Cantor sets.

THEOREM 4.4. Suppose that 1 <i<m, and L;s L*(I') >
LT is the operator defined by (63). Then

Lip=(Q.P; 9, (91)

with aperators Q, and P, defined by (83) and (85), respec-
tively.

We will define the operators @ ; and P, and observe that
they are similar to the operators {J; in (84) and 7, in (§6)
with region 2 replaced with region 2,

Q.. LZ(FI) - Lz(Rz\Qs)s :
P Lz(r.-') - Lz(r;).-

by

L;
Qs.i(a:)(x)=jﬁ log Iy, (x)—y; ()l a,(1) de, (92)

d Li
o, teg v =0

Ps,i(as)(x)= _ﬂas('x)-l-aN

xo,(t)dt. (93)

THEOREM 4.5. Suppose that for 1 <4, j < 4, the operator
S, LY I)— L3I

is defined by (64) and the operator

for

Ly LYT) - LAT) i#]

is defined by (065). Then

Si';' = (QSJP‘:il !‘[’)l I
Lﬂ‘f’: (Q.\-.:'P:fl"f’)lllj,

with operators Q, , and P, defined by (92) and {93), respec-
tively.

(94)
(95)

Remark 4.3. Suppose that the operator

LX)\ (L)

ol B | [
Loy | T )
Liry/  \LAr)

is defined by

I =Ly —Lios — Lo
U= — Ly, I —Lyay —Lya, (96)
—Lyoy —Lyu, 1 — L2,
=Ly —Lay, —Lgos i
Then the splitting matrix (see (67))
LX)
LX)
L) > 2
R AT
LX)
1s given by
L,
L
S,=U"'\ |, 7
g L ©7)
L,

with L, defined by (91) for 1 <i< 4 and L, defined by (95)
fort<i,j<4.

LEMMma 4.4, Suppose that @ Is an incoming potential on
the boundary I’ and that for 1 £ i< 4, @, is the total incoming
potential on I';, as defined by (60). Then

@,
@2
Qs
P4

=Sp'(P1 (98)

with the splitting matrix S, defined by (97). In other words,
the splitting matrix converts the Incoming potential ¢ on I
into the total incoming potentials { @} on boundaries {I';}.

THEOREM 4.6. Suppose that for all 1<i<4 the
scattering matrix for the compact set D is denoted by o, (see
{90)). Then the scaitering matrix o for the set D=j!_ | D,is
given by the merging formula

w=(S0, Sy, Szxz Syou) Sp? (99)
with operator S, defined by formula (94) for 1 <i< 4 and the
splitting matrix S, defined by formula (97).

Remark 4.4, Due to the self-similarity in Cantor sets
(see Section 2), we only need to compute one scatfering
matrix per level, even though there are 4’ subsets at the /th
level.

4.3.3. Discretization of Scattering Matrices

From the preceding sections, it is clear that the construc-
tion of scattering matrices for subsets of Cantor sets, either
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..........................

F1G. 10. Frame boxes for Cantor set 9,

directly or recursively, depends on the choice of frame
boundaries (sce (54) and (99)). For Cantor set (¢ we
recursively generate frame boxes for subsets of 2 Cantor set
¢ such that frame boxes at the same level are mutually
disjoint and the distance between a box and its frame box
equals the distance between two neighbor frame boxes {see
Fig. 10).

Based on the above choice of frame boxes, Tables I and 1
list the number of Legendre nodes needed on frame
boundaries for the representation of incoming and outgoing
potentials to single and double precision, respectively.

Remark 4.5.
Tables I and 11

Two observations can be easily made from

1. The number of Legendre nodes needed to obtain double
precision is only twice the number of nodes needed for single
precision.

2. The number of nodes needed increases rapidly with the
increase in ratio a.

With the choice of frame boundaries and Legendre nodes
on the boundaries, we are ready to discretize operators Pin
(75), §in (76), P, in (85), P, in {93}, O, in (83), Q,, in
{92), L in (89), L, in {91), S, in (94), L; in (95), and §,
in (97 with 1</, /<4

There are three types of discretization:

1. Operators P and Sin (75) and (76) are discretized as
foliows. Suppose that {z,, z,, ... z,,} is the approximation
TABLE 1

Number of Legendre Nodes for Single Precision
&= 107" {Absolute Error)

Ratioa ¢r 62 03 035 04 045

Number of nodes per side 12 18 30 46 66 100

5817113/1-4

TABLEI

Number of Legendre Nodes for Double Precision
£= 107" (Absolute Error)

Ratioa 01 02 03 035 04 045

Number of nodes per side 30 4 60 80 120 200

to the compact subset D=, and {x, x,,.., x,} are the
Legendre nodes on the boundary /” of domain €. The dis-
cretization of P defined by (75) is the matrix P defined by

for i#}j,

1< j<m, (100}

(101)

(P)y=In ||z, -z
(F,Jisziia

where A, is defined by (12). Similarly, discretizing the
operator S defined by (76), we otain the matrix S defined by
(§)y=Inlx, -z for I<i<p, l<gj<m (102)
2. Operators P, in (85) and P, in (93) are discretized
by the Galerkin method described in Section 3.4, and
operators @, in (83) and @, ; in (92) are discretized by the
Gaussian quadrature rule based on Legendre nodes.

3. Operators L, L, S, L;, and §, with 1 </, j<4,
defined in formuiae {89), (91), (94), (95), and (97), are com-
binations of operators P;in {83), Q,in (83}, O, in (92),
and P, in (93). Therefore, the discretization of the
operators L, L, S, L;, and §, need not be defined
separately. Therefore, a scattering matrix can be computed
either directly via formula (54) or recursively via for-
mula (99).

Theorem 4.7 is the immediate consequence of
Theorem 2.2,
THEOREM 4.7. With the discretization described above,

the matrix U defined by (96) is non-singular. Therefore, the
splitting matrix in (97} is uniquely defined.

5. THE FAST DIRECT ALGORITHM

In this section, we describe a direct algorithm for the
rapid solution of the Laplace equation on regions with frac-
tal boundaries. The algorithm exploits the fact that for any
given ratio a, interactions at any level in the Cantor set C¢
are of low rank (the ranks depend only on the constant
ratio a for generating the Cantor set and do not depend on
the sizes of boxes and number of points inside). The low
rank of interactions is reflected in the coefficient matrix in
Eqg. {10} as the low rank of its off-diagonal submatrices {see
Fig. 11). Thus, we can recursively compress these matrices
of low rank without actually generating them.
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FIG. 11,

To be more specific, let us consider four subsets (boxes)
in a Cantor set C* depicted in Fig. 12. They are boxes of
sized, and the distance between any two of them is
{1 —2a)d. The interactions between them are of low rank
{see Section 3.6) and can be represented via scattering
matrices (see Section 4.3).

Starting with the hierarchical structure of a Cantor set C*
{sce Section 2), we proceed by introducing a set of frame
boxes arranged in a tree structure (see Section 4.3). For a
given precision &, we determine the number of Legendre
nodes needed on frame boundaries {or the representation of
potentials (see Tables I and I},

To describe the algorithm, we need the following nota-
tion;

L, number of levels in the approximation of the Cantor
set C* (see Section 2).

N, N =4% the size of the approximation of the Cantor
set C* (see Section 2).

p, number of Legendre nodes on cach side of frame
boundaries for the representation of potentials to a given
precision £ (see Section 4.3.3}.

L,, number of a level on which a scattering martrix is
computed directly.

m, =4"""1 size of linear systems to be solved directly.

Ay, restriction of matrix A defined by (11) onto a subset
ibox at level L., In other words, (A,};=1niz;—z,{ and
(A;)y= Ay, where points {z,, ., z,}cibox, and A; is
defined by (12).

The fast direct algorithm is a two-pass procedure. In the
first (bottom-up) pass, we compute the scattering matrix for

d

e

u~mwt

FI1G. 12. Four subsets of Cantor set C°

level L, directly via formula (54) and scattering matrices for
all coarser levels (level number < L) by using the merging
scheme described in Theorem 4.6. In the second (top-down)
pass, we generate total incoming potentials on frame
boundaries up to level L, by using Lemma 4.4, Finally, we
solve 4 small-scale linear systems of size m x m directly at
level L,. The following is a formal description of the
algorithm.

THE ALGORITHM.

Initialization
Comment (Computations in the initialization are done once
for all.)

Step 1

Commen: (Given a real numbera (0<a<i) and an
integer L, construct the approximation of Cantor set C*
and its frame boxes)

dalev=0,1,2,. ., L

do ibox=1,2, .., 4%
Divide each box into four corner boxes
according to the constant g {see Section 2).
Construct the f{rame box for ihox (sec
Section 4.3},
endo
endo
do fev=L
do ibox=1,2, .., 4~
Compute the center of ibox.
enddo
enddo

Step 2

Comment (For a given precision g, precompute operators
P7L P 7 and A7)
do
Determine number of Legendre nodes p (see Tables 1
and II)
Generate the inverse of operators P, and P, defined by
{85) and (86), via the classical Galerkin method (see
Section 3.4},
Compute the inverse of m x m matrix A, directly.
enddo

Upward Pass
Comment (Compute scattering matrices and splitting
matrices )

Step 3

dojev=1"L,
Compute the discretized operators £ and S defined
by (89) and (76).
Compute the scattering matrix directly via formula
(54) a=S4;7'L.
endo
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Step 4

dolev=L,-1, L -2,.,10
doi=1,..,4
Compute operators L, and S, (defined by
formulae (91) and (94)) via the Gaussian
quadrature rule based on Legendre nodes.
doj=1,.,4
Compute L; defined by (95) via the
(Gaussian quadrature rule.
endo
endo
Compute the splitting matrix .S, by using formula (97).
Compute the scattering matrix 2 via the merging
scheme in Theorem 4.6.
endo

Downward Pass

Comment (Splitting matrices are now available,
Compute total incoming potentials on all frame
boundaries up to level L)

Step 5

dolev=12 ., L,
doibox=1,2, .. 4%
Compute total incoming potential ¢,
by formtula (98)
enddo
endo
Step 6
do ihox=1,2, .., 4%
Solve mxm linear system directly by computing
o,=A7 'Lip,, where operator L has been computed
at Step 3.
endo

Remark 5.1. Suppose that ibox is a fixed box at level L
Then in the splitting process, the total incoming potential
ot the frame boundary of ibox can be computed inde-
pendently from those on the other frame boundaries of
boxes at the same level. Thus, we can obtain a part of the
solution independently from the rest of the solution if only
a part of the solution is desired.

A brief analysis of the algorithmic complexity is given
below.

Step QOperation
Number count Explanation
Step | O(N) 4N boxes (squares} are involved.
Each box is determined by its
center and size.
Step 2 O(m* + p*) Operators P,and P, are of size

4p x 4p, and the operator A, 1s of
size m X m.

Step3  O(mp+ m’p) Operator L is of size m x 4p.
Operator S is of size 4p x m.

Operator 4! is of size m x m.

Step 4 Oftp’log Ny Operator L,, §,, and L, 1s of size
4px4p. S, 1s of size 16p x 4p.
Operator « is of size 4p x 4p.

There are log N levels.

Step 3 O(p>N)  The computation of the total
incoming potential ¢; on cach
frame boundary requires p*
operations. There are 47! (< N)

frame boundaries involved.

Step 6 O(m*pN)  Operator A7 is of size mx m.
Operator L is of size m x 4p.
Potential ¢, is a vector of size 4p.
Computations of A 'Le, are

done 4" (< N) times.

The time complexity of the algorithm is, therefore,

(B0’ + Boon’p) N+ fyp° log N, (103)
where the constant s is normally chosen to be m ~ 256, the
constant p depends on the geometry of a given fractal
boundary, and the choice of frame boundaries {see Tables I
and 11} and the constants f;, §,, and B, depend on the
computer system, implementation, language, etc.

The remark below can be obtained easily from formulae
{88), (86), (84), and {55).

Remark 5.2. Given scattering matrices and total
incoming potentials, the evaluation of the potential
Vx)= | In lx 1] do(o) (104)
Cﬂ

at any point xe R*\C® requires at most O(log N} opera-
tions, where o is the charge distribution over €°.

6. NUMERICAL RESULTS

A computer program has been implemenied utilizing the
algorithm of this paper, and it is capabie of computing
either whole or part of the solution and of evaluating the
potential at any point.

For this paper, we considered fractal boundaries of
Cantor type with ratios (0.1, 0.3, and 045, In the first
two experiments (¢=0.1, 0.3), the potentials on frame
boundaries are represented to double precision, while in the
third experiment (@ = 0.45) they are represented to 10 digits.
The stze of linear systems inverted directly at the final stage
has been chosen to be m = 256. All calculations have been
conducted on a Sparc [l workstation.
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TABLE II1

Compartson of Timings

TABLE V

Comparison of Timings

N Levels Ty (min}  Fegaemm (0} Te {est.) N Levels T, (min}  Trggemm (0) Toe lest.)
4,096 6 6 04 19.1h 4,096 6 122 L6 19.0h
16,384 7 9 13 51 days 16,384 7 181 13.0 51 days
65,536 8 11 26.4 (est.) 9 years 65,536 8 240 103.7 {est.) 9 years
262,144 9 14 211.2 (est.) 572 years 262,144 9 297 829.3 (est.) 572 years
1,048,576 10 19 1689.6 {est.) 366,283 years 1,048,576 10 360 6634.2 (est.) 366,283 years

Note. a=0.1,p=30,m=256,e=10""

The results are summarized in Tables II1, 1V, and V. The
first column is the size of the approximation to a Cantor set.
The second column is the number of levels in the generation
of Cantor set. The third column is the actual CPU time of
the fast direct algorithm of the preceding section. The fourth
column is either the CPU time or estimated CPU time of the
combined algorithm, the conjugate gradient {CG} algo-
rithm combined with the fast multipole method (FMM)
{see [217). The last column is the estimated timing for the
Gaussian elimination (it is given here only for comparison
purposes).

The following observations can be made from Tables 111,
IV, and V:

1. Although our fast algorithm asymptotically requires
O(N) operations, the actual running time of the algorithm
as observed from the numerical experiments seems to
behave like log N, due to the fact that the constant f, in
{103) is rather large compared to the constants f§, and f§,.
The constant §5 in (103) can be substantially reduced either
by a better choice of frame boundaries, or by improving the
representation of potentials.

2. For any N = 4096, our algorithm is faster than the
combined algorithm (the CG method combined with the
FMM, see [21]).

3. The performance of our algorithm deteriorates with

the increase in ratio @ as is expected (see Tables I and 1I).

TABLE IV

Comparison of Timings

N Levels Ty, (min}  Tegepnm (h) Tag (est.)
4,096 6 45 1.2 19.1h
16,384 7 67 83 51 days
65,536 8 88 66.7 (est.} 9 years
262,144 9 110 533.8 (est.) 572 vears
1,048,576 10 134 4270.3 (est.} 366,283 years

Note. a=03, p=60, m=256e=10"4"

Note. a=045 p=80,m=256¢c=10""

The following is a recapitulation of the other notation to
be used in the illustration of our numerical experiments:

a —ratio for generating a Cantor set.

p —number of Legendre nodes on each side of frame
boundaries.

m ——size of linear systems inverted directly.
¢ —precision of incoming and outgoing potentials.
N —size of the linear system {10} to be solved.

7. CONCLUSIONS

An O(N) direct algorithm has been constructed for the
rapid solution of the Laplace equation on regions with
fractal boundaries, where N is the number of elements in the
discretization of the [ractal. In the algorithm, operators of
low rank are recursively compressed and the inverse is con-
structed in a compressed form so that it can be applied to a
vector rapidly. The algorithm is capable of generating only
a part of the solution if desired. Evaluation of the potential
at any point requires Oflog N} operations. Numerical
examples presented in Section 6 indicate that even very
large-scale problems result in acceptable CPU time
requirements. In the presented paper, a two-dimensional
version of the algorithm is described. Generalizing this
result to three dimensions is fairly straightforward and will
be reported at a later date.

REFERENCES

1. E. Aurell, M. Benedicks, P. Jones, and 8. Grossman, Harronic
Measure on a Fractal, Annual Review of Swedish Nationa! Research
Council, May 1992 (unpublished).

2. M. Barnsley, Fractals Everywhere (Academic Press, New York/
London, 1988).

3. G. Beylkin, R. Coifman, and V. Rokklin, Commun. Pure Appl. Math,
14, 141 (1991).

4. P, Billingsley, Ergodic Theory and Informarion (Wiley, New York/
London/Sydney, 19635).

5. G. Bitkhoff and R. Lynch, Numerical Solution of Elfiptic Problems,
SIAM Studies in Applied Mathematics (SIAM, Philadelphia, 1984).



LAPLACE EQUATION ON REGIONS WITH FRACTAL BOUNDARIES

. J. Carrier, L. Greengard, and V. Rokhlin, STAM J. Sci. Siat. Comput.
9, No. (4) {1988).

. L. Carleson, Ann. Acad. Sci. Fenn. 10, 113 (1985).

. R. Courant and D. Hilbert, Methods of Marhematical Physics, Vol. I
(Wiley Interscience, New York, 1953).

. 1. L. Doob, Classical Potential Theory and Its Probabilistic Counter-
parts (Springer-Verlag, New York, 1983},

. G. A. Edgar, Measure, Topology, and Fracial Geometry (Springer-
Verlag, New York, 19%0).

. C. A. 1. Fletcher, Computational Galerkin Methods (Springer-Verlag,
New York, 1984).

. L. Greengard and V. Rokhlin, J. Compur. Phys. 73, 325 (1987).

. L. Greengard and V. Rokhlin, Commun. Pure Appl. Math. 14, 419
(1991).

. P. Jones and T. Wolll, Acia Math. 161 (1988).

. P. Lax and R. Phillips, Scattering Theory (Academic Press, New York,
1967).

. J. Ma, Ph.D. thesis, Yale University, November 1992,

17
18

19.

20.

21.
22,

23

24.

25

26.

51

. N. G. Makarov, in Proceedings, Int. Cong. Math,, Berkeley, CA, 1986.

. B. Mandelbrot, Fractals: Form, Chance and Dimension (Freeman,
San Francisco, 1977).

B. Mandelbrot, The Fractal Geometry of Nature {Freeman, San
Francisco, 1982).

1. G. Petrovsky, Lectures on Partial Differential Egquations (Dover,
New York, 1991).

V. Rokhlin, J. Comput. Phys. 60 187 (1985).

J. Stoer and R, Bulirsch, Tniroduction to Numerical Analysis (Springer-
Verlag, New York, 1980).

H. Takayasu, Fractals in the Physical Sciences {Manchester Univ,
Press, Manchester/New York, 1990).

M. Tsuji, Potential Theory in Modern Function Theory {Stevens,
New York, 1959).

T. Vicsek, Fracial Growth Phenomeng (World Scientific, Singapore,
1989).

J. Wermer, Potential Theory, Lecture Notes in Mathematics, Vol. 408
(Springer-Verlag, New York, 1981).



